1 Introduction

A hidden Markov model (HMM) is a tuple (H,X%,T, E,P), where H =
{1,...,|H|} is the set of hidden states, ¥ is the set of symbols, T'C H x H
is the set of transitions, &£ C H x X is the set of emissions, and P is the
probability function for elements of 7" and F, satisfying the following con-
ditions:

e There is a single start state hggary € H with no transitions (h, hgtart) €
T, and no emissions (for this reason, hgtart is also called a silent state).

e There is a single end state hepg € H with no transitions (hepg, h) € T,
and no emissions (also hepq is a silent state).

e Let P(h|h') denote the probability for the transition (h, k') € T, and let
P(c|h) denote the probability of an emission (h,c) € E, for h';h € H
and ¢ € X. It must hold that

> P(h|h') =1, for all b € H\ {hena}-
heH

Especially,

> " P(h|hstart) = 1.

heH

(P(h, ) gives the transition probability from state h’ to h. Reverse
order of the arc (h,h').)

Observe that we denote the probability of transition from h’' to h by
P(h|h'), rather than with a notation like p(h’, h). “h given h'.”

2 Definitions

A path through an HMM is a sequence P of hidden states = P = pop1p2 - - * PnPnr1,
where (p;, pi+1) € T, for each i € {0,...,n}. The joint probability of P and
a sequence S = 5189 - - - S, With each s; € ¥, is

n n

P(P,S) = [[P(pis1lp:) [ [ P(silpi)-

=0 i=1

We will be mainly interested in the set P(n) of all paths pop; - - - pr+1 through
the HMM, of length n + 2, such that pg = hstart and pn+1 = heng-



3 Problems

Given an HMM M over an alphabet 3, and a sequence S = s1S2- - Sp,
with each s; € ¥, find the path P* in M having the highest probability of
generating .S, namely

n

P* = argmaxP(P, §) = arg maxHIP’ (Pit1, i) HP(Si,pi)- (1)

Given an HMM M over an alphabet 3, and a sequence S = s189 -+ - sy,
with each s; € ¥, compute the probability

P(S)Z Z Z prz-i-l;pz H (Sz’pl) (2)
PEP(n) PEP(n) i=0

For a path P = pyp1ps - - - pn, through the HMM, we define

n—1 n
]P)prefix<P7 S) = H P(I)’H—l‘pz) H P(*Sz ’pz)
=0 i=1

Given a path P = p1ps - - - pppn+1 through the HMM, we define

]P)suffix(P7 S) = H P(pi+1|pi) H P(Sz‘pz)
=1 =1

4 The Viterbi algorithm

The Viterbi algorithm solves the Problem 1. For every i € {1,...,n} and
every h € {1,...,|H|}, define

U(’i, h) = max {Pprefix(Pa §1 51)|P = hstartP1 - - 'piflh}

as the largest probability of a path starting in state hgiary and ending in
state h, given that the HMM generated the prefix s;---s; of S (symbol s;
being emitted by state h).

We can easily derive the following recurrence relations for v(, h):

U(i; h) = max {]P)prefix(hstartypl e 'piflh,a S1- - Szfl)P(h|h/)P(sz|h)|(hla h) € T}
= P(s4, |h) max{v(i — 1, K )P(h|R")|(W, h) € T},
(3)



hstart X h y hend

0 1 0 0 0 0 0

v(i,h) = P(s; | h)max(v(i — L,x)P(h | x),
v(ii = 1, y)P(h | y),
v(i — 1,2)P(h | 2))

n

Figure 1: The idea behind the Viterbi algorithm, assuming that the prede-

cessors of state h are the states x,y, and z.
Y

where we take by convention v(0, hstart = 1 and v(0,h) = 0 for all h #
hstart. Indeed, v(i, h) equals the largest probability of getting to a prede-
cessor h/ of h, having generated the prefix sequence s - --s;_1, multiplied
by the probability of the transition (h’, h) and by P(s;|h).

The largest probability of a path for the entire string S (that is, the
value maximizing 1) is the largest probability of getting to a predecessor
h' of heng, having generated the entire sequence of S = s1---s, (symbol
sp begin emitted by state h’), multiplied by the probability of the final
transition (h', hepng. Expressed in terms of v,

ngg()IP’(P, S) = max {v(n, h)P(hena|M)|(W, hena € T'}. (4)
eP(n

The values v(+, ) can be computed by filling a table V[0..n, 1..|H|] row-
by-row in O(n|T'|) time. The most probable path can be traced back in
the standard dynamic programming manner, by checking which predecessor
h' of heng maximizes 4 and then, iteratively, which predecessor h’ of the
current state h maximizes 77. Figure 1 illustrates the dynamic programming
recurrence.



5 The forward and backward algorithms

The forward algorithm solves the Problem



