
1 Introduction

A hidden Markov model (HMM) is a tuple (H,Σ, T, E,P), where H =
{1, . . . , |H|} is the set of hidden states, Σ is the set of symbols, T ⊆ H ×H
is the set of transitions, E ⊆ H × Σ is the set of emissions, and P is the
probability function for elements of T and E, satisfying the following con-
ditions:

� There is a single start state hstart ∈ H with no transitions (h, hstart) ∈
T , and no emissions (for this reason, hstart is also called a silent state).

� There is a single end state hend ∈ H with no transitions (hend, h) ∈ T ,
and no emissions (also hend is a silent state).

� Let P(h|h′) denote the probability for the transition (h, h′) ∈ T , and let
P(c|h) denote the probability of an emission (h, c) ∈ E, for h′, h ∈ H
and c ∈ Σ. It must hold that∑

h∈H
P(h|h′) = 1, for all h′ ∈ H \ {hend}.

Especially, ∑
h∈H

P(h|hstart) = 1.

(P(h, h′) gives the transition probability from state h′ to h. Reverse
order of the arc (h, h′).)

Observe that we denote the probability of transition from h′ to h by
P(h|h′), rather than with a notation like p(h′, h). “h given h′.”

2 Definitions

A path through an HMM is a sequence P of hidden states = P = p0p1p2 · · · pnpn+1,
where (pi, pi+1) ∈ T, for each i ∈ {0, . . . , n}. The joint probability of P and
a sequence S = s1s2 · · · sn, with each si ∈ Σ, is

P(P, S) =
n∏

i=0

P(pi+1|pi)
n∏

i=1

P(si|pi).

We will be mainly interested in the set P(n) of all paths p0p1 · · · pn+1 through
the HMM, of length n+ 2, such that p0 = hstart and pn+1 = hend.

1

3 Problems

Given an HMM M over an alphabet Σ, and a sequence S = s1s2 · · · sn,
with each si ∈ Σ, find the path P ⋆ in M having the highest probability of
generating S, namely

P ⋆ = argmax
P∈P(n)

P(P, S) = argmax
P∈P(n)

n∏
i=0

P(pi+1, pi)
n∏

i=1

P(si, pi). (1)

Given an HMM M over an alphabet Σ, and a sequence S = s1s2 · · · sn,
with each si ∈ Σ, compute the probability

P(S) =
∑

P∈P(n)

P(P, S) =
∑

P∈P(n)

n∏
i=0

P(pi+1, pi)
n∏

i=1

P(si|pi). (2)

For a path P = p0p1p2 · · · pn through the HMM, we define

Pprefix(P, S) =

n−1∏
i=0

P(pi+1|pi)
n∏

i=1

P(si|pi).

Given a path P = p1p2 · · · pnpn+1 through the HMM, we define

Psuffix(P, S) =
n∏

i=1

P(pi+1|pi)
n∏

i=1

P(si|pi).

4 The Viterbi algorithm

The Viterbi algorithm solves the Problem 1. For every i ∈ {1, . . . , n} and
every h ∈ {1, . . . , |H|}, define

v(i, h) = max
{
Pprefix(P, s1 · · · si)|P = hstartp1 · · · pi−1h

}
as the largest probability of a path starting in state hstart and ending in
state h, given that the HMM generated the prefix s1 · · · si of S (symbol si
being emitted by state h).

We can easily derive the following recurrence relations for v(i, h):

v(i, h) = max
{
Pprefix(hstart, p1 · · · pi−1h

′, s1 · · · si−1)P(h|h′)P(si|h)|(h′, h) ∈ T
}

= P(si, |h)max{v(i− 1, h′)P(h|h′)|(h′, h) ∈ T},
(3)

2

Figure 1: The idea behind the Viterbi algorithm, assuming that the prede-
cessors of state h are the states x, y, and z.

’

where we take by convention v(0, hstart = 1 and v(0, h) = 0 for all h ̸=
hstart. Indeed, v(i, h) equals the largest probability of getting to a prede-
cessor h′ of h, having generated the prefix sequence s1 · · · si−1, multiplied
by the probability of the transition (h′, h) and by P(si|h).

The largest probability of a path for the entire string S (that is, the
value maximizing 1) is the largest probability of getting to a predecessor
h′ of hend, having generated the entire sequence of S = s1 · · · sn (symbol
sn begin emitted by state h′), multiplied by the probability of the final
transition (h′, hend. Expressed in terms of v,

max
P∈P(n)

P(P, S) = max
{
v(n, h′)P(hend|h′)|(h′, hend ∈ T

}
. (4)

The values v(·, ·) can be computed by filling a table V [0..n, 1..|H|] row-
by-row in O(n|T |) time. The most probable path can be traced back in
the standard dynamic programming manner, by checking which predecessor
h′ of hend maximizes 4 and then, iteratively, which predecessor h′ of the
current state hmaximizes ??. Figure 1 illustrates the dynamic programming
recurrence.

3

5 The forward and backward algorithms

The forward algorithm solves the Problem

4

