1 Introduction

A hidden Markov model (HMM) is a tuple $(H, \Sigma, T, E, \mathbb{P})$, where $H=$ $\{1, \ldots,|H|\}$ is the set of hidden states, Σ is the set of symbols, $T \subseteq H \times H$ is the set of transitions, $E \subseteq H \times \Sigma$ is the set of emissions, and \mathbb{P} is the probability function for elements of T and E, satisfying the following conditions:

- There is a single start state $h_{\text {start }} \in H$ with no transitions $\left(h, h_{\text {start }}\right) \in$ T, and no emissions (for this reason, $h_{\text {start }}$ is also called a silent state).
- There is a single end state $h_{\text {end }} \in H$ with no transitions $\left(h_{\text {end }}, h\right) \in T$, and no emissions (also $h_{\text {end }}$ is a silent state).
- Let $\mathbb{P}\left(h \mid h^{\prime}\right)$ denote the probability for the transition $\left(h, h^{\prime}\right) \in T$, and let $\mathbb{P}(c \mid h)$ denote the probability of an emission $(h, c) \in E$, for $h^{\prime}, h \in H$ and $c \in \Sigma$. It must hold that

$$
\sum_{h \in H} \mathbb{P}\left(h \mid h^{\prime}\right)=1, \text { for all } h^{\prime} \in H \backslash\left\{h_{\text {end }}\right\} .
$$

Especially,

$$
\sum_{h \in H} \mathbb{P}\left(h \mid h_{\text {start }}\right)=1 .
$$

$\left(\mathbb{P}\left(h, h^{\prime}\right)\right.$ gives the transition probability from state h^{\prime} to h. Reverse order of the $\operatorname{arc}\left(h, h^{\prime}\right)$.)

Observe that we denote the probability of transition from h^{\prime} to h by $\mathbb{P}\left(h \mid h^{\prime}\right)$, rather than with a notation like $p\left(h^{\prime}, h\right)$. " h given h^{\prime}."

2 Definitions

A path through an HMM is a sequence P of hidden states $=P=p_{0} p_{1} p_{2} \cdots p_{n} p_{n+1}$, where $\left(p_{i}, p_{i+1}\right) \in T$, for each $i \in\{0, \ldots, n\}$. The joint probability of P and a sequence $S=s_{1} s_{2} \cdots s_{n}$, with each $s_{i} \in \Sigma$, is

$$
\mathbb{P}(P, S)=\prod_{i=0}^{n} \mathbb{P}\left(p_{i+1} \mid p_{i}\right) \prod_{i=1}^{n} \mathbb{P}\left(s_{i} \mid p_{i}\right)
$$

We will be mainly interested in the set $\mathcal{P}(n)$ of all paths $p_{0} p_{1} \cdots p_{n+1}$ through the HMM, of length $n+2$, such that $p_{0}=h_{\text {start }}$ and $p_{n+1}=h_{\text {end }}$.

3 Problems

Given an HMM M over an alphabet Σ, and a sequence $S=s_{1} s_{2} \cdots s_{n}$, with each $s_{i} \in \Sigma$, find the path P^{\star} in M having the highest probability of generating S, namely

$$
\begin{equation*}
P^{\star}=\underset{P \in \mathcal{P}(n)}{\arg \max } \mathbb{P}(P, S)=\underset{P \in \mathcal{P}(n)}{\arg \max } \prod_{i=0}^{n} \mathbb{P}\left(p_{i+1}, p_{i}\right) \prod_{i=1}^{n} \mathbb{P}\left(s_{i}, p_{i}\right) . \tag{1}
\end{equation*}
$$

Given an HMM M over an alphabet Σ, and a sequence $S=s_{1} s_{2} \cdots s_{n}$, with each $s_{i} \in \Sigma$, compute the probability

$$
\begin{equation*}
\mathbb{P}(S)=\sum_{P \in \mathcal{P}(n)} \mathbb{P}(P, S)=\sum_{P \in \mathcal{P}(n)} \prod_{i=0}^{n} \mathbb{P}\left(p_{i+1}, p_{i}\right) \prod_{i=1}^{n} \mathbb{P}\left(s_{i} \mid p_{i}\right) \tag{2}
\end{equation*}
$$

For a path $P=p_{0} p_{1} p_{2} \cdots p_{n}$ through the HMM, we define

$$
\mathbb{P}_{\text {prefix }}(P, S)=\prod_{i=0}^{n-1} \mathbb{P}\left(p_{i+1} \mid p_{i}\right) \prod_{i=1}^{n} \mathbb{P}\left(s_{i} \mid p_{i}\right)
$$

Given a path $P=p_{1} p_{2} \cdots p_{n} p_{n+1}$ through the HMM, we define

$$
\mathbb{P}_{\text {suffix }}(P, S)=\prod_{i=1}^{n} \mathbb{P}\left(p_{i+1} \mid p_{i}\right) \prod_{i=1}^{n} \mathbb{P}\left(s_{i} \mid p_{i}\right)
$$

4 The Viterbi algorithm

The Viterbi algorithm solves the Problem 1. For every $i \in\{1, \ldots, n\}$ and every $h \in\{1, \ldots,|H|\}$, define

$$
v(i, h)=\max \left\{\mathbb{P}_{\text {prefix }}\left(P, s_{1} \cdots s_{i}\right) \mid P=h_{\text {start }} p_{1} \cdots p_{i-1} h\right\}
$$

as the largest probability of a path starting in state $h_{\text {start }}$ and ending in state h, given that the HMM generated the prefix $s_{1} \cdots s_{i}$ of S (symbol s_{i} being emitted by state h).

We can easily derive the following recurrence relations for $v(i, h)$:

$$
\begin{align*}
v(i, h) & =\max \left\{\mathbb{P}_{\text {prefix }}\left(h_{\text {start }}, p_{1} \cdots p_{i-1} h^{\prime}, s_{1} \cdots s_{i-1}\right) \mathbb{P}\left(h \mid h^{\prime}\right) \mathbb{P}\left(s_{i} \mid h\right) \mid\left(h^{\prime}, h\right) \in T\right\} \\
& =\mathbb{P}\left(s_{i}, \mid h\right) \max \left\{v\left(i-1, h^{\prime}\right) \mathbb{P}\left(h \mid h^{\prime}\right) \mid\left(h^{\prime}, h\right) \in T\right\} \tag{3}
\end{align*}
$$

Figure 1: The idea behind the Viterbi algorithm, assuming that the predecessors of state h are the states x, y, and z.
where we take by convention $v\left(0, h_{\text {start }}=1\right.$ and $v(0, h)=0$ for all $h \neq$ $h_{\text {start }}$. Indeed, $v(i, h)$ equals the largest probability of getting to a predecessor h^{\prime} of h, having generated the prefix sequence $s_{1} \cdots s_{i-1}$, multiplied by the probability of the transition $\left(h^{\prime}, h\right)$ and by $\mathbb{P}\left(s_{i} \mid h\right)$.

The largest probability of a path for the entire string S (that is, the value maximizing 1) is the largest probability of getting to a predecessor h^{\prime} of $h_{\text {end }}$, having generated the entire sequence of $S=s_{1} \cdots s_{n}$ (symbol s_{n} begin emitted by state h^{\prime}), multiplied by the probability of the final transition ($h^{\prime}, h_{\text {end }}$. Expressed in terms of v,

$$
\begin{equation*}
\max _{P \in \mathcal{P}(n)} \mathbb{P}(P, S)=\max \left\{v\left(n, h^{\prime}\right) \mathbb{P}\left(h_{\text {end }} \mid h^{\prime}\right) \mid\left(h^{\prime}, h_{\text {end }} \in T\right\}\right. \tag{4}
\end{equation*}
$$

The values $v(\cdot, \cdot)$ can be computed by filling a table $V[0 . . n, 1 . .|H|]$ row-by-row in $O(n|T|)$ time. The most probable path can be traced back in the standard dynamic programming manner, by checking which predecessor h^{\prime} of $h_{\text {end }}$ maximizes 4 and then, iteratively, which predecessor h^{\prime} of the current state h maximizes ??. Figure 1 illustrates the dynamic programming recurrence.

5 The forward and backward algorithms

The forward algorithm solves the Problem

